μ-Opioid receptor 6-transmembrane isoform: A potential therapeutic target for new effective opioids.

نویسندگان

  • Marino Convertino
  • Alexander Samoshkin
  • Josee Gauthier
  • Michael S Gold
  • William Maixner
  • Nikolay V Dokholyan
  • Luda Diatchenko
چکیده

The μ-opioid receptor (MOR) is the primary target for opioid analgesics. MOR induces analgesia through the inhibition of second messenger pathways and the modulation of ion channels activity. Nevertheless, cellular excitation has also been demonstrated, and proposed to mediate reduction of therapeutic efficacy and opioid-induced hyperalgesia upon prolonged exposure to opioids. In this mini-perspective, we review the recently identified, functional MOR isoform subclass, which consists of six transmembrane helices (6 TM) and may play an important role in MOR signaling. There is evidence that 6 TM MOR signals through very different cellular pathways and may mediate excitatory cellular effects rather than the classic inhibitory effects produced by the stimulation of the major (7 TM) isoform. Therefore, the development of 6 TM and 7 TM MOR selective compounds represents a new and exciting opportunity to better understand the mechanisms of action and the pharmacodynamic properties of a new class of opioids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new splice of life for the μ-opioid receptor.

μ-Opioid agonists mediate their analgesic effect through GPCRs that are generated via alternate splicing of the Oprm1 transcript. While the majority of μ-opioids interact with receptors comprising the canonical 7 transmembrane (7TM) domain, a recently identified class of μ-opioids appears to require a 6TM domain variant. In this issue of the JCI, Lu and colleagues provide an in vivo proof-of-co...

متن کامل

Mediation of opioid analgesia by a truncated 6-transmembrane GPCR.

The generation of potent opioid analgesics that lack the side effects of traditional opioids may be possible by targeting truncated splice variants of the μ-opioid receptor. μ-Opioids act through GPCRs that are generated from the Oprm1 gene, which undergoes extensive alternative splicing. The most abundant set of Oprm1 variants encode classical full-length 7 transmembrane domain (7TM) μ-opioid ...

متن کامل

A novel alternatively spliced isoform of the mu-opioid receptor: functional antagonism

BACKGROUND Opioids are the most widely used analgesics for the treatment of clinical pain. They produce their therapeutic effects by binding to mu-opioid receptors (MORs), which are 7 transmembrane domain (7TM) G-protein-coupled receptors (GPCRs), and inhibiting cellular activity. However, the analgesic efficacy of opioids is compromised by side-effects such as analgesic tolerance, dependence a...

متن کامل

A ligand-based 3D pharmacophore model for the μ opioid receptor: application to the morphinan class of opioids

Background Opioid receptors belong to the rhodopsin subclass within the superfamily of G protein-coupled receptors (GPCR), which are characterized by the presence of seven transmembrane (7TM) helices. They interact with morphine and related opioid alkaloids as well as with endogenous opioid peptides. There are three main types of opioid receptors (μ, δ, ), which are differently implicated in op...

متن کامل

Structural and functional interactions between six-transmembrane μ-opioid receptors and β2-adrenoreceptors modulate opioid signaling

The primary molecular target for clinically used opioids is the μ-opioid receptor (MOR). Besides the major seven-transmembrane (7TM) receptors, the MOR gene codes for alternatively spliced six-transmembrane (6TM) isoforms, the biological and clinical significance of which remains unclear. Here, we show that the otherwise exclusively intracellular localized 6TM-MOR translocates to the plasma mem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Progress in neuro-psychopharmacology & biological psychiatry

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2015